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Summary New results for similarity scaling of the velocity profile of the 2-D wall- 
bounded fluid flows are presented. The theoretical results are based on a simple concept; the 
area under similar scaled velocity profile curves must be equal. By taking certain integrals of the 
scaled velocity profiles and its first derivative, we obtain a number of similarity scaling 
requirements. For example, it is shown that if whole-profile similarity exists, then: 1) the similar 
length scaling variable must be proportional to the displacement thickness, and 2) the velocity 
similarity scaling variable must be proportional to the free-stream velocity. Conventional 
thinking is that whole-profile similarity is limited to laminar flow boundary layers. If true, this 
would drastically restrict the utility of the new scaling results. However, we show that to 
experimental accuracy, certain turbulent boundary layer flow datasets can display whole-profile 
similarity and that as predicted the new scaling works well. In addition, we develop new 
definitions for partial similarity for the inner, the outer, and the log law regions of a turbulent 
boundary layer. These definitions are most suitable for quantifying similarity of experimental 
profiles. 



1. Introduction 
Similarity is one of the basic tenets of fluid flow theory, going back to the pioneering work of 

Reynolds[l] in the 1800's. For wall-bounded flows, the formal definition of similarity is that 
two velocity profiles are similar if they differ only by a scaling constant in y and u (where y is 
the normal direction to the wall and u is the velocity parallel to the wall). In the following, we 
discover some new properties of similar velocity profiles of 2-D wall-bounded boundary layer 
flows. The results are based on a new integral-based definition of similarity of the velocity 
profiles of 2-D wall-bounded flows. The new similarity scaling requirements are obtained 
without having to find solutions of the flow governing equations. Therefore, the new results 
apply to similar profiles whether they are laminar, transitional, or turbulent velocity profiles as 
long as the velocity is taken as the Reynolds averaged velocity profile. 

The new similarity results are derived from simple integrals of the velocity profile (or its 
derivative) and are based on the requirement that the area under the scaled velocity profile curves 
must be equal. In what follows, we show that the mathematics requires that if similarity exists, 
then the displacement thickness must be a similarity length scaling variable for 2-D wall 
bounded boundary layer flows. We also show that the velocity scaling variable must be 
proportional to the free-stream velocity for this flow geometry. While other scaling variables are 
possible, we show that the length scale and the velocity scale variables are not independent. In 
fact, our scaling variable relationship is identical to the empirically derived scaling velocity 
successfully used by Zagarola and Smits [2] to scale turbulent boundary flows over wedges, in 
channels, and in pipes. 

The new mathematical definition of similarity assumes the entire profile displays similarity 
behavior like one finds for the laminar boundary layer. However, the turbulent boundary layer is 
more complicated than the laminar boundary layer since the viscous region is largely confined to 
the near-wall region of the boundary layer. As a consequence, there has been considerable effort 
in the community to establish the possible existence of partial similarity by finding "scaling 
laws" for different regions of the velocity profile for turbulent boundary layer flows (see for 
example, review by Buschmann and Gad-el-Hak [3]). These include the log law region, the 
near-wall inner layer region and the outer layer region. In what follows, we use the equal area 
idea to develop new mathematical definitions for partial similarity for these various regions. The 
main advantage of these new definitions is that similarity can be discovered and verified by 
comparing numerical integral values of the velocity profile datasets being investigated. This 
removes the subjectivity of the commonly applied "Chi-by-eye" method of comparing velocity 
profile plots that is presently being used to claim similarity in experimental datasets. 

Finally, we examine the case for similarity of the 2-D turbulent boundary layer on a wedge. 
In particular we are interested in what, if anything, we can say about the scaling variables for this 
flow situation. Based on a momentum balance argument, Castillo and George [4] have pointed 
out that for turbulent flows with a pressure gradient, the velocity scaling variable for the outer 
layer region must be the free-stream velocity. Recently, Weyburne [5] examined this flow 
configuration theoretically using the transformed x-momentum balance equation and the 
transformed Reynolds stress transport equation. The derived similarity criteria were used to find 
eleven experimental turbulent boundary layer datasets that show velocity profile similarity. It 
was found that in all cases the displacement thickness worked well as the outer layer similarity 
thickness scale and that the free-stream velocity works well as the outer layer velocity scaling 
variable. This is the same result we obtained theoretically herein for whole-profile similarity for 
this flow situation. 



Is this result merely a coincidence? Conventional thinking says that turbulent boundary layer 
flow over a wedge cannot display whole-profile similarity due to viscous effects (Townsend [6]). 
After careful study, we conclude that the result is not a coincidence. We show the reason the 
similarity scalings are the same for certain datasets is that the changes in the profile shape along 
the flow direction due to viscous effects are smaller than the experimental noise errors 
encountered in measuring the profile velocity. Therefore, to experimental accuracy, certain 
turbulent boundary layer data sets that show outer layer similarity actually show whole-profile 
similarity. If this result holds irrespective of Reynolds number, than this will have profound 
implications on modeling the turbulent boundary layer velocity profile. In what follows, we start 
with a review of the relevant mathematical theory of similarity and the equations that result. 

2. The Mathematics of Similarity 

2.1 Velocity Profile Scaling 
In the analysis below, no assumptions are necessary as to the functional form of the velocity 

profile u ( y). The only requirements are that the boundary conditions for the velocity profile are 

known. The mathematical development presented herein is based on a simple concept; for 
similarity, the area under properly scaled velocity profile curves must be equal. Consider a 2-D 
flow along a body such that the y -direction is normal to the body's surface.   The length and 

velocity scaling variables 8 and us, as well as the other scaling variables used below, can vary 

with the flow direction but not in the   y -direction.    Starting with the formal definition of 
similarity, that is two velocity profiles are similar if they differ only by a scaling constant in y 

and w(y), then it is self evident that for the profiles to be similar, the area under the properly 

scaled velocity profiles must be equal. The area under the scaled profiles, in mathematical terms, 
is given by 

his 

C°    =     J d\~S\   K-"^))/"5    ' C1) 
where c0 is a nonzero numerical constant, y = h is deep into the free stream, and ue is the value 

of the stream-wise velocity u(y) at the edge of the boundary layer. The integral is written 

using the velocity difference so that the integral value is not dependent on the numerical value of 
h as long as h is located deep in the free stream. Using a variable switch (d [y 18} => (1/S)dy) 

and simple algebra, Eq. 1 reduces to 
uA (2) 
usS 

where the Sl is the displacement thickness given by 
h 

Sx    =    jdy {\-u(y)/ue}     . (3) 
o 

Eq. 2 is an exact equation that applies whether the profiles are similar or not.   A necessary 
condition for similarity is that the c0 values for each profile of the set of profiles being tested are 

equal.  For scaling purposes, one can take c0 = 1 in Eq. 2, which then becomes the empirically 



derived velocity scale successfully used by Zagarola and Smits [2] to scale turbulent boundary 
flows over wedges, in channels, and in pipes. The importance of Eq. 2 in regards to similar 
profiles is that it means that the thickness scaling and the velocity scaling variables are not 
independent for 2-D wall-bounded similarity flows. 

Having equal c0 values is a necessary but not a sufficient condition for similarity of a set of 

profiles. If the scaled velocity profiles are similar, then it is self-evident that the scaled velocity 
profiles multiplied by the scaled y -coordinate raised to the nth power must also be similar. In 
mathematical terms, having equal area under the scaled velocity profiles multiplied by the scaled 
y -coordinate raised to the nth power is equivalent to 

hIS       (     ~\   /      \n 

[ue-u{y)}/us , (4) 

where cn are, in general, non-zero numerical constants. Mathematically, it is self-evident that a 

sufficient condition for similarity of a set of profiles is that the cn values for «=0,1,2,...,oo for 
each profile of the set are equal. 

2.2 First Derivative Profile Scaling 
By considering the area under the velocity profiles we were able to: 1) establish the inter- 

dependence of the length and velocity scaling variables and 2) provide an alternative definition 
of similarity. Using the same methodology from above, we can extend the mathematics of 
similarity to the first derivative profile and find additional similarity requirements for the 
velocity profile. If similarity is present in a set of velocity profiles then it is self-evident that the 
scaled first derivative profiles (derivative with respect to the scaled y -coordinate) must also be 
similar. It is also self-evident that the area under the scaled first derivative profiles must be equal 
for similarity. Furthermore, the area under the scaled first derivative profiles multiplied by the 
scaled v -coordinate to the power one must also be equal for similarity to exist. 

In mathematical terms, equal area under the scaled first derivative profiles is expressed by 

, "f , \y\ d{u.-u(y)}lu, 

where b is a non-zero numerical constant. Using the boundary conditions u (0) = 0 and 

u (/z) = ue combined with a simple variable switch, Eq. 5 reduces to 

. ue (6) 
b    -   —-   . 

Therefore, for similarity of the velocity profiles in this geometry, the scaling velocity must be 
proportional to the free-stream velocity. 

Next, having equal area under the scaled first derivative profiles times the scaled y - 
coordinate (to the power one) is equivalent to 



where d is a non-zero numerical constant. After a simple variable switch and integrating by 
parts, this equation reduces to 

d    =   8XI8   . (8) 

Eq. 8 is important in that it states that if similarity exists in a set of profiles, then the 
displacement thickness must be a length scale that results in similarity for both the velocity 
profiles and the first derivative profiles. Therefore, using simple mathematics, we have 
determined that the displacement thickness Sl must be a similarity length scaling variable if 

similarity is found to exist in a set of velocity profiles. From Eq. 6, we also know that the free- 
stream velocity ue must be a similarity velocity scaling variable for 2-D wall-bounded flows. 

2.3 Partial Similarity Definitions 
The above results apply to any 2-D wall-bounded flow for which similarity is found to be 

present in a set of velocity profiles. It is generally accepted by the fluid flow community that the 
2-D wall-bounded turbulent boundary layer flow does not show whole-profile similarity (an 
assessment we do not agree with). Since closed solutions are not presently available, there has 
been considerable effort in the community to establish the possible existence of similarity 
solutions by finding "scaling laws" for different regions of the velocity profile for turbulent 
boundary layer flows (see for example, Buschmann and Gad-el-Hak [3]). These include the log 
law region, the near wall inner layer region, defined as the region for which the wall-induced 
viscous forces are important and the outer region, which is defined as the rest of the velocity 
profile that is not part of the inner region. 

Consider first the case for partial similarity that deals with the so-called log law region that 
overlaps the inner and outer layers of a wall-bounded flow. There is some debate whether this 
region even exists at low Reynolds numbers and whether the profile should follow a logarithmic 
or exponential form [3]. Assuming the region exists, we can define a set of equations using the 
same technology from above to define similarity of the log law region. We start by defining a 
length scaling variable  S0  and a velocity scaling variable  u0  for this overlap region of a 

turbulent boundary layer. A sufficient condition for proving similarity of the overlap region of a 
set of velocity profiles is that the integrals given by 

Pn =   1 d i4 ir k-MW}Ao , (9) 
h{/S0      I   °J V°oJ 

are equal for «=1,2,3,...,oo for each profile in the set.   It this set of equations  y=h0 is the 

location of the upper boundary of applicability and y =hi is the lower boundary of applicability 

for this overlap region. 
In a similar fashion, we can define similarity of the inner region. For this case we define a 

length scale S^ and a velocity scale u{ for the inner region of a turbulent boundary layer.   A 

sufficient condition for similarity of a set of profiles in the inner region is that the integrals given 
by 

f     \" hxl8-x 

S; 
j   din   j-     {ue-u{y)}lu{    , (10) 



are equal for n= 1,2,3,.. .,00 for each profile in the set. In this set of integrals, y = h0 is the upper 

limit of the inner region and the lower limit of the outer region. 
Finally, to mathematically define similarity of the outer region, we start by defining a length 

scale Sw and a velocity scale ww for the outer region of a turbulent boundary layer. A sufficient 

requirement for similarity of a set of velocity profiles in the outer region is that the integrals 
given by 

L - J:WM {u'-u(y)]lu'' • 
are equal for n=0,l,2,...,<x> for each profile in the set. In this set of integrals, y =h is deep into 

the free stream and y =h0 is the upper limit of the inner region. The usefulness for these partial 

similarity definitions will be discussed below. 

3. Partial Similarity Scaling 
For whole-profile similarity, we showed that the length and velocity scaling variables must be 

proportional to S{ and ue. Unfortunately, the partial similarity case is not conducive to the same 

simple theoretical derivations that were used above to study scaling. In this section we will 
investigate what, if anything can be said about the length and velocity scaling for the partial 
similarity case. This section is separated from the previous case (whole-profile similarity) 
because the scaling results must be proven experimentally since the theoretical approach is not 
available. 

Let us consider the particular case of partial similarity scaling of the outer region of a 2-D 
wall-bounded turbulent flow over a wedge. Based on a momentum balance argument, Castillo 
and George [4] have pointed out that for turbulent flows with a pressure gradient along the flow 
direction, the velocity scaling variable for this case must be  ue.    Recently, Weyburne [5] 

investigated experimental datasets displaying outer region similarity of the turbulent flow over a 
wedge. The eleven experimental datasets included sets with an adverse, favorable, and zero 
pressure gradients. It was found that for the selected subset of profiles, the displacement 
thickness öx worked well as the outer region similarity thickness scale and that the free-stream 

velocity at the boundary edge ue worked well as the similarity velocity scale in all cases. This is 

the same result we obtained theoretically above for whole-profile similarity for this flow 
situation. This almost certainly is not a coincidence so the question becomes what underlying 
physical circumstances would lead to this result. 

To investigate this situation, we start by assuming that a set of experimental profiles are 
measured and appear to result in similarity-like behavior in the outer region when plotted using 
the length scaling variable Sl and the velocity scaling variable ue.   This means that the f0 

values (Eq. 11, n=0) for each profile in the set must be equal to within experimental error. The 
mathematical difference between c0 (Eq. 1) and f0 using S{ and ue as the scaling variables is 

h0löi     r     ~\ 

A    =       I   dlj-i {ue-u(y)}/ue    . (12) 



If the value of A were equal for these same profiles that are similar in the outer region, then we 
would have the case that f0 and A added together would result in equal c0 values for each 

profile of the set. This means that the similarity results for the whole-profile discussed above 
would then apply. However, using a simple momentum balance approach, Townsend [6] has 
presented theoretical arguments that indicate that the viscous forces make it impossible to have 
exact similarity over the whole-profile for most 2D wall-bounded turbulent flows (with the 
exception of flow between a wedge, also called sink flow). This means that by Townsend's 
argument, A cannot be constant for 2-D boundary layer flow over a wedge as considered herein. 
However, consider the various adverse pressure gradient (APG), favorable pressure gradient 
(FPG) and zero pressure gradient (ZPG) experimental datasets that show similarity-like behavior 
in the outer region in Fig. 1 (the details of the experimental datasets used are given in Table 1). 
Conventional thinking says that the near-wall viscosity effects preclude whole-profile similarity. 
This is equivalent to saying that the variation of the value of A must be large for these cases. 
However, looking at plots of a number of turbulent boundary layer datasets in Fig. 1, it is 
obvious that the variation of the value of the area under the profiles from the wall ( v / Sl = 0 ) to 

1- 

ulu 

0- 

0 

Skare & Krogstad [7] - 7 APG profiles 
Clauser [8] - 5 APG profiles 
Ludwieg & Tillmann [9] -10 FPG profiles 
Herring & Norbury [10] - 4 FPG profiles 
Osterlund [11] - 5 ZPG profiles 

yis, 
Fig. 1: APG, FPG, and ZPG velocity profiles from various sources. 



Author Stations showing 
velocity profile similarity 

Source of dataset 

Skäre and Krogstad [7] JC=4.0, 4.2, 4.4, 4.6, 4.8,5.0, and 5.2 Author 

Clauser[8] x=18.58, 23.83, 26.92, 29.75, and 32.25 Coles and Hirst [12] 
Ident 2200 

Ludwieg and Tillmann 
[9] 

JC=0.782, 1.282, 1.782, 2.282, 2.782, 3.132, 
3.332, 3.532, 3.732, 3.932, 4.132, and 4.332 

Coles and Hirst [12] 
Ident1300 

Herring and Norbury 
[10] 

x= 2, 3, 4, and 5 Coles and Hirst [12] 
Ident 2700 

Osterlund [11] ^=1.5,2.5,3.5, 4.5 and 5.5 («e = 10.3 m/s) 
consisting of SW981129A, SW981128A, 

SW981127H, SW981126C, & SW981112A 

Author 

Table 1:   Summary of Datasets 

the lower limit outer region (~y/Sl = 0.2, see [18]) must be relatively small.  The evolution of 

the viscous forces as one proceeds down the length of the wedge apparently are simply not large 
enough to drastically change the velocity profile shape. Hence the expected change in the area 
under the profile in this near-wall region must be small. If the variation of A is smaller than the 
experimental measurement error bars, then it can be said that to experimental accuracy, the A 
values would be equal. That would mean that to experimental accuracy, the set of velocity 
profiles would be similar. This, in turn, means that the scalings 8 oc Sl and us cc ue must apply. 

In order to prove that the variation of A is indeed small, consider a specific example, the 
outer layer data of Skäre and Krogstad [7] plotted in Fig. 2. In this figure, the black lines are 
seven outer layer experimentally measured velocity profiles taken with a spacing of 0.2 meters 
along a plate in an adverse pressure gradient. It is evident that the seven profiles show very good 
collapse using S{ and ue scaling. An expanded view at different spots along the plot, not shown, 

shows that there is no noticeable Reynolds number-dependent behavior of the profile plots 
indicating outer region similarity. Now consider the intersection of the red and black lines in 
Fig. 2a. This is the location of the lower limit of the outer region (the identity of the red lines 
will be discussed below). According to established theory, if Skäre and Krogstad had measured 
the profiles all the way to the wall, then the area under the profiles would not be equal. 
However, looking at the data in expanded view in Fig. 2b, it appears that the near-wall 
differences are very small. 

One way to establish that the viscous effects are truly small numerically would to use noise- 
free exact solutions obtained by solving the flow governing equations. However, this is not 
possible at this point in time for turbulent flows. An alternative approach is to use semi- 
empirical analytical models of the near-wall turbulent velocity profile, like the ones developed 
by Spadling [13], Musker [14], and Monkewitz, et. al. [15]. These semi-empirical models are 
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0.0 

Experimental Profiles 
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Figs. 2a and 2b: The seven velocity profiles (black lines) from Skäre and Krogstad [7] are 
depicted in a. The seven red lines are the semi-empirical Spadling [13] profiles. In b the x-y 
scale is expanded. In this figure all data points are included from Skäre and Krogstad [7] 
including the inner layer data. 

considered to represent the inner viscous region of the turbulent boundary layer very 
well [15-17]. The calculated Spalding profiles are depicted in Fig. 2a by the red lines (using the 
Monkewitz, et. al. [15] log law constants, see Discussion below). The Musker and Monkewitz, 
et. al. plots, not shown, are essentially indistinguishable from the Spaulding plots of Fig. 2a. In 
all cases the analytical profiles were calculated using Skäre and Krogstad's tabulated data. Even 
at the expanded scale in Fig. 2b, the seven red lines appear to collapse to a single curve 
indicating similar-like profiles. In this plot, the seven Skäre and Krogstad profiles (includes all 
data points, not just the outer region points as in Fig. 2a) are plotted as black lines and the 
Spalding profiles as red lines. It is readily evident that the variation of the Spalding profiles 
(which model the actual profiles) is smaller than the experimental noise level. This means that 
the expected variation of the inner layer is smaller than what one can measure experimentally. 

For confirmation, we now turn to the task of calculating the area under the scaled profiles. 
For the upper limit of integration for A (Eq. 12), we need to establish the value of h0. 

Examining velocity plots from Skäre and Krogstad (their Fig. 3a) together with the log law curve 
indicates the inner region upper boundary is at about y+ = 300. This corresponds to taking 

hQ -300 uT/v. The value of u(h0) for each dataset was calculated using simple linear 

interpolation between adjacent experimental data points. To calculate Sl using the experimental 

data,  we  added  the  data point   w(0) = 0   to  each  dataset.     In  Table  2,  we  summarize 



Location sim Musker ^Spalding ^MCN /o ^MCN + ^° 

x=4.0 0.15603 0.12544 0.12676 0.12608 0.87254 0.99862 
x=4.2 0.15620 0.12537 0.12669 0.12602 0.87311 0.99913 
x=4.4 0.15486 0.12472 0.12605 0.12540 0.87375 0.99915 
x=4.6 0.15521 0.12502 0.12633 0.12570 0.87471 1.00041 
x=4.8 0.15575 0.12475 0.12607 0.12545 0.87401 0.99946 
x=5.0 0.15531 0.12536 0.12666 0.12666 0.87267 0.99933 
x=5.2 0.15467 0.12528 0.12657 0.12598 0.8755 1.00148 

mean value =  0.15543  0.12513  0.12645  0.1259   0.87376   0.99965 
s.d. =    5.8E-4   3.0E-4   3.0E-4   4.3E-4   0.0011    0.00152 

Coef.Var.=   3.7E-3   2.4E-3   2.4E-3   3.4E-3   0.0013    0.00468 

Table 2: Calculated integral values using hQ = 300 uT Iv , 

the numerical values for A (Eq. 12), designated AMusker, ASpalding, and AMCN, and f0 (Eq. 11, 

n=0).  The f0 values were calculated using the experimental data points using the Trapezoidal 

rule and typically involved 35-38 points.   The integrals AMusker, ASpalding, and AMCN are the 

values of the approximate A calculated using the semi-empirical analytical velocity profiles. 
These integrals were calculated using 1000 calculated data points and using the Trapezoidal rule 
integration formula. 

The Coefficient of Variation (Coef.Var.), defined as the standard deviation (s.d.) divided by 
the mean, for the approximate A calculated in Table 2 only account for the variation due to 
viscosity induced changes to the profile shape. If it were possible to experimentally measure 
profiles all the way to the wall, the A calculation would also include an experimental noise 
component. In fact, looking at Fig. 2b, it is apparent that experimental noise on the profile will 
have a significant effect on the variation of A. To try to estimate this effect, we added the 
column designated Isim to Table 2.  The idea is to estimate the Coef.Var. of integrating an area 

of approximately equal size to the analytical A but in a section of the outer layer profile 
considered to be similar. Since the profiles in this region are similar, then the only contribution 
to the Coef.Var. will be from noise. Therefore we picked an area under the outer layer region of 
Fig. 2a that has approximately the same area as A and that is immediately adjacent to A . This 
area, Isim, is calculated for each profile using a lower limit of y / S1 - 0.11 (s 300 wr / v) and an 

upper limit of y 15X - 0.41.  This area should give a reasonable estimate of the Coef.Var. of A 

due to just experimental noise. 
There are two important points that can be made from the Table 2 data. First, notice that the 

Coef.Var. of   Isim is about the same as the Coef.Var.   for AMusker, ASpalding, or AMCN.   This 

means that even if one had a way to measure the velocity profile all the way to the wall with 
present day technology, the experimental noise would make it very difficult to see the variation 
of the velocity profile due to viscosity effects. We estimate that the variation of A due to 
experimental noise would need to be at least an order of magnitude smaller in order to see a 
Reynolds number-induced variation of A caused by just the viscosity effect. The second point is 
that the value of AMCN + f0 is very close to a value of one for the Skäre and Krogstad data. The 
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same is true for AMusker + f0 and ASpaulding + f0 (not shown). For whole-profile similarity, Eq. 2 

requires that c0 = A + f0 - 1 for this choice of scaling variables. Therefore, to experimental 

accuracy, the seven Skäre and Krogstad velocity profiles exhibit whole-profile similarity 
behavior. This in turn means that for this dataset, we must have the scalings 8 oc Sl and us oc ue 

according to the results in Section 2. 
The Skäre and Krogstad dataset was used because the predicted inner layer variation was 

small. We found that not all profiles that showed outer layer similarity, as in Fig. 1 for example, 
will necessarily show small variations of the similarity plots predicted by the Spadling, Musker, 
or Monkewitz, et. al. semi-empirical profiles. However, we did find two other datasets in the 
literature that do show the same predicted small variation of the inner layer behavior as the Skäre 
and Krogstad dataset. The data of Clauser [8] and Herring and Norbury [10] datasets, plotted in 
Figs. 3a and 3b, do support the notion that the expected viscosity-induced variation of the profile 
shape is indeed small for certain datasets displaying outer layer similarity. Furthermore, the 
plots again indicate that the inner layer variation would be very difficult to measure even with 
present-day technology. 

ulu„ 
Experimental Profiles 
Musker Analytical Profiles 

1- 

ulu 
Experimental Profiles 
Monkewitz, et. al. Profiles 

0 10 

yis, yis, 
Figs. 3a and 3b: Five velocity profiles (black lines) from Clauser [8] are depicted in a. In 
b the four velocity profiles (black lines) are from the Herring and Norbury [10]. The red 
lines in both figures are the analytical profiles. 
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3. Discussion 
The new integral-based theoretical approach to similarity was successful in showing that if 

similarity exists in a set of velocity profiles for 2-D wall bounded flows, then the similarity 
length scale must be proportional to the displacement thickness S{ and the similarity velocity 

scale must be proportional to the free-stream velocity ue. This is the first time that certain length 

and velocity scales have been shown to be similarity length and velocity scales for a whole class 
of flows, in this case 2-D wall-bounded laminar, transitional, and turbulent flows. Other length 
and velocity scaling variables are possible besides S{ and ue.   However, the thickness scaling 

and the velocity scaling variables cannot be independent and must be related according to Eq. 2. 
Another important practical contribution in this paper deals with the problem of discovering 

and quantifying partial similarity for the turbulent boundary layer. In the past, similarity of 
experimental curves has been determined using the "Chi-by-eye" method to judge whether plots 
of a set of profiles collapse to a single curve. With the new integral method, we can calculate 
and compare the values using Eqs. 9, 10, or 11 (depending on which area is of interest). Similar 
velocity profiles, that is, scaled velocity profiles that are superposable so as to be nearly 
coincident throughout the boundary layer region of interest, should have equal integral values 
within experimental error and show no Reynolds number trends. These numerical values can be 
tested for equivalence using standard statistical methods thereby removing the subjectivity 
inherent in the "Chi-by-eye" method. 

The new similarity scaling results are based on the mathematical implications of similarity. 
That is, if one has a set of mathematical curves that collapse to a single new curve upon scaling, 
then one can derive information about the properties of the scaling without having to know how 
the curves were generated. This is a fundamentally different approach to similarity than the flow 
governing equation approach. In the flow governing equation approach, one tries to determine 
the mathematical implications of reducing the set of scaled partial differential equations that 
govern the flow to a set of ordinary differential equations. The advantage of the new approach 
over the flow governing equation approach is that it works for laminar, transitional, and turbulent 
flows. However, the new approach is only strictly valid for whole-profile similarity. Therefore, 
while interesting from a theoretical perspective, the whole-profile similarity restriction would 
seem to marginalize the new results to applications involving laminar flows since it has been 
universally accepted that whole-profile similarity is not possible for turbulent boundary layer 
flow. Since laminar flows are already known to be similar and its scaling variable behavior is 
known, then what is the utility of the new the scaling variable results? 

The answer comes from the last Section concerning similarity scaling of the outer region of 
turbulent boundary layer flow. Based on theoretical arguments, conventional thinking says that 
the turbulent boundary layer cannot display whole-profile similarity due to viscosity effects. We 
showed that within experimental accuracy, whole-profile similarity does exist for certain 
turbulent boundary layer datasets. Thus the similarity results in Section 2 apply and the 
similarity scaling must be given by 8 cc Sl and us oc ue.  Therefore, the new theoretical scaling 

results are supported by experimental results for both the laminar and turbulent boundary layer 
flows. 

How can one rationalize this result with conventional thinking that says that the turbulent 
boundary layer cannot display whole-profile similarity. The conventional wisdom case is based 
on the argument that the x -dependent variable groupings appearing in the flow momentum 
equations must have the same functional dependence as the flow develops along the wedge. 
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Equivalently, one can divide the momentum equations through by one of the variable groupings 
and check for constancy of the resulting parameters. Townsend [6] used this approach to show 
that if one includes the viscous force term parameter for turbulent flows, then these parameter 
ratios require that the similarity length scale ö must be linear in x and the similarity velocity 
scale us must go as 1/x {i.e., wedge sink flow).   These results are indisputable.  However, the 

momentum equation argument does not account for the magnitude of the viscosity term as one 
proceeds down the wedge, or in this case the variation of the magnitude of the term as one 
proceeds down the wedge. Since the flow governing equations are partial differential equations, 
it is always necessary to neglect certain terms because their magnitude is small relative to the 
other terms in order to obtain similarity solutions. Consider, for example, the case of laminar 
flow on a flat plate first treated by Blasius [19]. Reduction of the x-momentum equation to an 
ordinary differential equation is only possible if one neglects the pressure term dP/dx (among 
others). This term is small relative to the other terms but it is definitely nonzero and its value 
changes as one proceeds down the plate. The consequences of completely neglecting the dP/dx 
term is that the Blasius solution predicts a reasonable parallel velocity profile solution but we are 
forced to accept the fact that the predicted normal velocity component reduces to a non- 
physically-realizable constant value at an infinite distance from the plate surface. It is our 
contention that for certain turbulent boundary layer flows, that while the magnitude of the 
viscous term in the momentum equation is not negligible as one proceeds down the length of the 
wedge, the variation of the magnitude of the term is smaller than what can be measured 
experimentally. In the section above, we presented semi-empirical based arguments that indicate 
that the viscous term variation as one proceeds down the length of a wedge for certain turbulent 
flows is indeed small. Therefore, the Townsend-based requirements are not always applicable 
and whole-profile similarity is possible for certain 2-D wall bounded turbulent boundary layer 
flows. 

Additional support for the violation of the Towsend viscosity-based similarity argument 
comes from the success of the Prandtl scaling in producing similarity of the velocity profiles in 
the inner region of the turbulent boundary layer. How can one explain this near universality of 
the success in light of Towsend's viscosity argument? According to this argument, inner layer 
similarity should not be possible for the turbulent boundary layer except for sink flow. And yet 
there has been overwhelming experimental evidence that inner layer similarity using the Prandtl 
plus scaling is universally successful for all turbulent boundary layers. The only answer that 
makes sense is that, as we have already contended above; the expected differences in the velocity 
profiles due to viscosity must be smaller than what can be measured experimentally. 

The experimental results for Clauser [8], Herring and Norbury [10], and Skäre and 
Krogstad [7] are some of the datasets that we found that showed small variations of the inner 
viscous region. What they all have in common is that the experimental setup for these three 
datasets were specifically designed to obtain equilibrium flows of the Clauser type. One of the 
keys in trying to experimentally develop Clauser equilibrium layers is to try to adjust the 
pressure gradient along the wedge to try to keep the skin friction coefficient small and constant. 
We believe that this is the reason for small viscosity induced changes to the velocity profile 
along the wedge length. Keeping the skin friction coefficient constant means keeping the 
velocity gradient at the wall constant. Note that this is the un-scaled velocity gradient. This in 
turn means the viscous induced changes along the wedge will be small since the un-scaled near- 
wall velocity profiles will be similar since the velocity gradient boundary conditions are similar. 
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Fig. 4: The five velocity profiles (black lines) from Österlund [11] and the five red lines 
are the analytical Musker [14] profiles. 

Of the other datasets that we looked at that show similarity-like behavior in the outer layer 
(see Fig. 1), most did not show the small variations in the velocity plots as those presented 
above. Instead, plots of the profiles are similar in appearance to Österlund's [11] data shown in 
Fig. 4. The data in Fig. 4 clearly indicates large Reynolds number dependent variations of the 
viscous forces resulting in a lack of velocity profile similarity in the near wall region. Thus not 
all turbulent boundary layer profiles showing outer layer similarity with Fig. 1 type scaling will 
necessarily show whole-profile similarity. This type of similarity, which we term similarity-like 
behavior, is obviously not true similarity. However, true similarity like that in Figs. 2-3, is 
relatively rare while the similarity-like behavior is more common. Thus, for engineering 
purposes, the similarity-like behavior scenario is still a useful concept for characterizing 
turbulent boundary layers. 

More experimental work needs to be done to prove or disprove whole-profile similarity of 
the turbulent boundary layer. As we have already pointed out, the experimental verification of 
viscosity-induced profile variations will be very difficult with the measurement apparatus 
presently available. For example, DeGraaff and Eaton [20] indicate that using latest available 
technology, Laser Doppler Anemometry, the velocity can only be measured with   +1.5% 
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uncertainty. This is simply not adequate to see Reynolds number-dependent velocity profile 
variations due to viscosity-induced effects for certain flows. Near-wall effects will only 
compound the measurement problem. While this may be the opening salvo on the debate over 
whole-profile similarity, it is clear that to experimental accuracy, certain existing datasets from 
the literature do display whole-profile similarity for turbulent boundary layer flows. 

The ZPG data plotted in Fig. 4 may not show whole-profile similarity but it does support our 
contention that the semi-empirical analytical velocity profiles follow the experimental data rather 
well. Note that the semi-empirical velocity profiles from Spadling [13], Musker [14], and 
Monkewitz, et. al. [15] all subsume the log law for turbulent flows. It is known that pressure 
gradients can cause a shift in the velocity profile from the "universal" log law profile [21]. For 
the velocity profile datasets with pressure gradients used herein we tested various von Karmon 
log law constants from the literature including the traditional values, the newer Monkewitz, et. 
al. [15] ZPG values, and the APG values of Nagib, et. al. [21] by plotting the data along wth the 

Musker ^Spalding ^MCN 

Coef.Var. 
for K = 0.384 

2.4E-3 2.4E-3 3.4E-3 

Coef.Var. 
for «- = 0.359 

2.6E-3 2.6E-3 2.8E-3 

Coef.Var. 
for x- = 0.41 

2.3E-3 2.4E-3 2.3E-3 

Table 3: Coefficient of Variation (Coef.Var.) using various Log Law constants. 

various log law lines. It was found that the Monkewitz, et. al. [15] ZPG values worked well 
even for the velocity profiles with pressure gradients. Nevertheless, for assurance, we calculated 
the semi-empirical approximate A (Eq. 12) integrals using the different sets of the von Karmon 
log law constants. The results are summarized in Table 3. It is evident that the calculated 
Coef.Var. of the AMusker, As  ldi   , and AMCN values are all similar. This means that even if the 

log law curves are shifted, the variation of the profiles will remain small. Therefore, we are 
confident that the arguments based on the use of the semi-empirical velocity profiles given above 
are valid. Furthermore, we must point out that the only way to discredit the semi-empirical 
based argument above is to discredit the log law for the turbulent boundary layers flows 
involved, that being equilibrium flows of the Clauser type. 

Recall that Eq. 2 is identical to the velocity scaling first suggested empirically by Zagarola 
and Smits [2] for turbulent boundary layer flow including channel, wedge, and pipe flow (for 
scaling purposes, one can take any nonzero numerical value for c0 including c0 = 1).  Zagarola 

and Smits [2] and others [4,22,23] (see also discussion and references in Buschmann and 
Gad-el-Hak [3]) have shown that Eq. 2 is successful at collapsing a number of experimentally 
obtained velocity profile data sets. The reason for the success has never been fully explained 
from a theoretical standpoint [3]. At first glance the success may seem reasonable but recall that 
Eq. 2 was derived herein based on whole-profile similarity. Therefore, one explanation for the 
success of the Zagarola and Smits scaling is that the data profiles actually exhibit whole-profile 
similarity (to experimental accuracy) or the outer region similarity-like behavior demonstrated 
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by Österlund's [11] datasets in Figs. 1 and 4. A simple first step to verify this finding is to replot 
the data exhibiting good profile collapse with Zagarola and Smits scaling using 8 oc Sl  and 

us QC ue scaling instead.  Weyburne [5] has already had good success in collapsing many of the 
available experimental datasets using these scaling.   This would add credibility to the whole- 
profile similarity scenario. 

4. Conclusion 
A fundamentally new way of deriving flow similarity criteria for velocity profiles was 

presented. It was shown that for whole-profile similarity of 2-D wall bounded velocity profiles; 
the displacement thickness must be a similarity length scaling variable and the velocity scaling 
variable must be the free-stream velocity at the boundary layer edge. It was shown that to 
experimental accuracy, certain turbulent boundary layers can exhibit whole-profile similarity 
and, in agreement with the new theoretical results, the displacement thickness and the free stream 
velocity at the boundary layer edge work well as scaling variables. In addition, new similarity 
definitions were developed that avoid the subjectivity inherent in the conventional method used 
to assert the existence of similarity in a set of experimental profiles. 
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